
Optimization Cultures
21 April 2014

Manfred Gilli
Université de Genève and Swiss Finance Institute
manfred.gilli@unige.ch

Enrico Schumann
Aquila Capital Group
es@enricoschumann.net

Abstract

Computational optimizationmethods can broadly be classi�ed
into two groups: classical methods, which require and exploit
speci�c functional forms of objective function and constraints,
and heuristics. Those latter methods impose few, if any, restric-
tions on models, at the price of being more computationally
demanding. But because of the growth of computing capacity
over the last decades, those methods are now perfectly-practical
tools for everyday use. Yet, instead of realizing the advantages of
heuristics, users still cling to classical methods. We discuss the
reasons for this non-acceptance of heuristics, and argue that the
choice of numerical-optimization techniques is as much driven
by the culture of the user – �eld of work and educational back-
ground – as by the quality of the method. In particular, we ar-
gue that many of the alleged shortcomings of heuristics could
be overcome if researchers stopped treating optimization as a
mathematical, exact discipline; instead, they should consider it
a practical/computational tool.

Keywords: Numerical Optimization; Heuristics; Algorithms

1 Introduction

“I think there is a world market for about �ve computers.”
So said, allegedly, Thomas J. Watson, then chairman of ibm,
in 1943. It would take another ten years, until 1953, before ibm
delivered its �rst electronic computer, the 701.

Stories and quotations like that abound: peoplemaking predic-
tions about computing technology that turn out to be spectacu-
larlywrong.1 Tobe fair,Watson probably nevermade that state-
ment; most of such infamous forecasts are more likely made up
or taken out of context.

But in any case, Watson’s alleged statement certainly re�ects
the spirit of the time, and reading it today highlights the steep
growth path that computing power has taken:2 nowadays in ev-

1This applies as well to predictions about technology and to predictions
in general. See, for instance, predictions on tv at http://www.elon.edu/
e-web/predictions/150/1930.xhtml .

2Many examples have been made to provide intuition for the magnitude of
this development. One of our favorites is fromDongarra et al. (1998): “Indeed,
if cars had made equal progress [as microprocessors], you could buy a car for a
fewdollars, drive it across the country in a fewminutes, and ‘park’ the car in your

eryone’s pocket there are devices that performmillions of times
faster than ibm’s 701.

Of course, it is not only hardware that has improved, but soft-
ware, too. If people still operated on terminals or had to use
punch-cards for storing programs, computing would be much
less powerful today.

This evolution, which took place in roughly a man’s work-life,
has led to a number of consequences.

Less division-of-labor. Because computers have become so fast
and easy to use, people in many disciplines turn more and
more into polymaths rather than specialists. Or, to put
it di�erently, they become specialists in broader-de�ned
�elds. We see this happen in statistics and data analysis,
where often a single person can handle data preparation
and processing, analyze data, estimate models, run simu-
lations and more. Or think of publishing. Modern com-
puters and software have enabled people to not only write
papers and books, but to actually produce them, i.e., cre-
ate artwork or graphics, de�ne the layout and so on.3

Portable software. Software and computingmodels that rely on
speci�c hardware architectures lose their appeal. For in-
stance, parallel computations that exploit speci�c commu-
nication channels in hardware have become less attractive.
Instead of spending the next year with rewriting their pro-
grams for the latest supercomputer architecture, people
can and should now use their time to think about their
applications andwrite useful software. (Then, after a year,
they can buy a better, faster machine.)

Interpreted languages. In the past, implementing algorithms
oftenmeant creating prototypes in a higher-level language
and then rewriting such prototypes in low-level languages
such as c. Today, prototypes written in languages such as
PythonorLua are so fast that a re-implementation is rarely
needed. As a consequence, implementation times have de-
creased, andwe canmuch faster explore new ideas or adapt
existing programs.

In this essay, we discuss how these powers can be put to good
use in a speci�c area of computation: numerical optimization.
We shall argue that the choice ofmethods and techniques in op-
timization is asmuch driven by culture as bymerit, and that the
mainstream culture has yet to recognize the newpowers that are
available.

Clearly, preference for one culture or another will be subjective
(what language is better, English or French?), and we will not

pocket!” If applied to computing power in general, that is an understatement:
it would now take fractions of a cent to buy a car, less than a second to cross the
country – and you might need magnifying glasses to even �nd your car.

3Curiously enough, that had actually been the state of a�airs before, as Jan
Tschichold (1971) observed: “In der frühzeit des buchdrucks waren drucker und
verleger eine und dieselbe person. Der drucker wählte selber die werke aus, die
er verlegen wollte; oft war er selber entwerfer und hersteller der typen, mit de-
nen er druckte; er beaufsichtigte selber den satz und setzte vielleicht selber mit.
Dann druckte er den satz, und das einzige, was er nicht selber lieferte, war das
papier. Nachher benötigte er vielleicht noch den rubrikator, der die initialen
einzuschreiben hatte, und einen buchbinder, falls er daswerk gebunden auf den
markt brachte.” [Note that the capitalization is Tschichold’s.]

1



even try to be impartial. Our thesis is this: The mainstream
culture today treats optimization as a mathematical, exact dis-
cipline. We shall argue that optimization should be considered
a practical/computational tool, not a theoretical/mathematical
one. Instead of proofs, researchers should emphasize empirical
and experimental results. Tobe clear: we donot suggest that op-
timization should do without mathematics. We merely suggest
a shift in balance.

More speci�cally, researchers and users of optimization meth-
ods should rely less on techniques that impose strong assump-
tions on the optimization model. Instead, they should prefer
a class of simpler, but extremely-powerful, methods: so-called
heuristics. These methods give their users much more freedom
in specifying a model, albeit at the price of being computation-
ally intensive. Because of the advances in computing hard- and
software over the past decades, they are now perfectly useable
with everyday computers. In sum, such a change in how opti-
mization is perceived, taught and applied – a shift in culture, if
you want – would not cost us much, but we would gain a lot.

As a caveat: most of our experience comes from statistics, eco-
nomics and �nance, with excursions into �elds such as compu-
tational psychologyor environmentalmodeling. Yetwe feel that
our arguments will be relevant as well to other disciplines that
use optimization.

2 On optimization

Numerical optimization starts with a model, typically stated as

minimize
x

f (x) , (1)

in which f is the function that we want to minimize, called
the objective function, and x are the decision variables. If we
wanted to maximize, we would minimize− f instead. In most
models, there are restrictions on how we may choose x.

Such optimization models do not exist in a “vacuum,” but are
set up for a speci�c purpose, and their results will, with luck,
serve that purpose. Thus, we start with an actual problem, such
as “how best to invest my pension savings?”, and then translate
this problem into a model; �nally we proceed from the model
to its numerical solution. In this essay, we will mainly be con-
cerned with the second part, from a model to its solution. But
we cannot emphasize enough how important the �rst step is,
from problem to model. It may be fun to work on a challeng-
ing optimizationmodel, but if themodel is not useful than nei-
ther is its solution. In Gilli et al., 2011, we discuss this point for
applications in �nance.

General-purpose computer algorithms for solving optimization
models work iteratively. They start with an initial solution, of-
ten speci�ed by the user, and then try to improve that solution
repeatedly. (Throughout this essay, we use theword solution in
the sense of “candidate solution,” or “result of running a com-
puter program.” In theory, the solution of a model is the set
of parameters that minimizes f ; thus, a solution is always opti-
mal.)

Heuristics, the techniques that we will advocate in this essay,

are simply a class of methods for solving optimization models.
But we are getting ahead of ourselves, so back to optimization
procedures.

The following pseudocode describes the workings of an opti-
mization method.

1: generate initial solution xc

2: while stopping condition not met do
3: create new solution xn = N (xc)
4: if A(xn

, xc) then xc = xn

5: end while
6: return xc

A speci�c method de�nes how to generate new solutions (the
functionN ), how to decide whether to accept such a new solu-
tion (the functionA), and when to stop the search.

Clearly, this algorithm is very general. It would even accommo-
date a completely-random search: the function N would ran-
domly draw a new solution xn without regard for the current
solution; if this new solution is better than the current solution,
it replaces it.

More typically, optimization methods exploit the local behav-
ior of the objective function, that is, they create a new solution
that is a variation of the current solution. Thus, the new solu-
tion inherits parts of the old solution. As a result, the objective-
function values of successive solutions should be positively au-
tocorrelated.

The majority of techniques that is used today belong to a class
that we shall call classical methods. Classical techniques concen-
trate their e�ort on searching for a candidate solution by con-
structing and solving convex local models. A new solution is
accepted as long as it is better than the previous one (above a
certain tolerance). Classical methods are the ideal techniques in
a perfectly-convex world.

But in real-life applications, things turn out to be not convex.
Multiple optima, nonlinearities, discontinuities due to integer
variables or measurement errors, a variety of constraints and
other peculiarities shape the objective function and search space
in realistic models. See Figure 1 for an example.

Classical methods cannot accommodate such features; the only
way touse them is to reshape themodel such that itmeets the re-
quirements of the technique. That is, researchers need to adjust
their models such that they �t the technique. Along the way,
the model loses realism.

But with heuristics, there is no need to convexify one’s mod-
els, since heuristics were specially developed to handle badly-
behaved – i.e., realistic – models.

Instead of creating candidate solutions through sophisticated
but fragile procedures, heuristics choose candidates randomly
in a given neighborhood of the current solution.4 These solu-
tions are accepted if they are better, but also if they are worse,
at least under speci�c circumstances, which we shall explain
shortly. The number of iterations for heuristics is much larger
than for classical methods, because we do not stop once we did

4The neighborhood of a solution x comprises all solutions that are, loosely
speaking, close to x.

2



−0.5

0.4
0.7 −0.5

0.3
0.7

0.01

0.015

0.02

0.025

w
2w

1

V
a

ri
a

n
ce

−0.5

0.4
0.7 −0.5

0.3
0.7

−70

−60

−50

−40

−30

w
2w

1

V
a

R

Figure 1: The graphic shows the objective functions of two portfolio-
optimization models. In both models, the goal is to minimize the risk
of a portfolio of three assets. In the upper panel, we equate risk with
return variance. Thus, the function shows the variance of the port-
folio for di�erent weights of two assets; the third asset’s weight is �xed
through the budget constraint (i.e., we cannot investmorewealth than
we have). This is the standard model in portfolio optimization, intro-
duced inMarkowitz (1952). In order to solve it, a classical optimization
technique starts at some point that is speci�ed by the user. Then it
moves downhill (“minus the gradient”) until at some point the gradi-
ent becomes zero: the objective function is �at, and we have arrived
at the minimum. That minimum is easily found because the function
is smooth and only has one optimum. In fact, Markowitz chose this
speci�cation for risk because the function is so well-behaved, not be-
cause he considered it the best �nancial speci�cation. Already in the
1950sMarkowitz pondered using downside semi-variance as a measure
for risk, but rejected it mainly because he could not �nd an algorithm
to solve the resulting model.
In the lower panel we use the same dataset, but now we de�ne risk as
the Value-at-Risk, a quantile of the return distribution. We clearly see
that the function is not smooth and has many local minima. A classi-
cal method would not be appropriate for such a model, since it would
stop at the �rst minimum that it �nds. Heuristics, on the other hand,
have been successfully applied to such models. See for instance Gilli
and Këllezi (2002) or Dueck and Winker (1992), which is the �rst ap-
plication of optimization heuristics to portfolio-selection problems.

not �nd an improvement.

Classical and heuristic techniques are both based on the same
principles. Both types of methods iterate over a sequence of
two phases: (i) a creation phase, in which candidate solutions
are constructed; and (ii) an acceptance phase, in which it is de-
cided whether the new candidate replaces the previous solution
or not. The techniques di�er only in the way they implement

these phases.

Heuristics spend less e�ort in creating a particular new solu-
tion.5 Instead, heuristics create many new solutions; they re-
place the cleverness of classical methods with brute force. In the
past, such reliance on computing power was a severe handicap,
but onmodern computers – not supercomputers, but the vari-
ety that we have on our desktops – that is no longer a problem.

Let us look at two particular techniques.

An example of a classical technique is the steepest-descent
method. Given a current solution xc, we create a new solution
xn by estimating the slope (gradient) of f at xc, which provides
us with the search direction. The new solution xn is xc minus
a multiple of the slope. Every new solution is accepted and re-
places xc as long as it is better than xc. We stopwhen no further
improvements in f can be found. (For a more detailed descrip-
tion, see chapter 4 of Gill et al., 1986.)

Using the gradient as a search direction is a reasonable idea, but
there are models in which the gradient does not exist or cannot
be computed meaningfully. Also, the acceptance-criterion for
steepest-descent is strict: if there is no improvement, a candidate
solution is not accepted. Yet if the objective function has several
minima, such as the function in the lower panel of Figure 1, we
will never be able to move away from a local minimum, even if
it is not the global optimum.

For suchmodels, weneed to give up the idea of “optimal” search
directions, and we need to be more lenient when it comes to
accepting new solutions. Heuristics do just that.

A well-known heuristic is Simulated Annealing (Kirkpatrick
et al., 1983). In thismethod, the functionN randomly chooses a
new solution close to the current solution. Thus, we completely
dispense with good search directions; any direction will do. If
the new solution is better, we accept it. If it is worse, we accept
it, too; but only with a speci�c probability. This probability
depends on how bad xn is: the worse it is, the less likely it is ac-
cepted. Also, the probability of acceptance is generally lower in
later iterations.

We can think of Simulated Annealing as a biased random-walk
through the solution space: the mechanics of the acceptance
rule ensure that there is a bias towards better solutions, even
though an improvement is not rigidly enforced in every step.
But because the routine is repeated often – typically thousands
of times –, we are virtually guaranteed a good solution.

3 Optimization cultures

Unlike classical methods, heuristics require essentially no as-
sumptions about the optimization model. They are conceptu-

5In this respect, heuristics are similar to a class of numerical optimization
methods that were introduced in the 1950s: direct-search methods. This is not
to say that there is a historical development fromdirect search to heuristicmeth-
ods. Rather, direct-search methods stand somewhere in between classical and
heuristic techniques: they are classical because they are still “greedy” and do not
rely on any random mechanisms; but they are also simple, make few assump-
tions about a model, and simply work well in many cases. For an overview, see
Wright (1996).

3



ally simple, which also means that we can easily translate them
into computer programs. This �exibility shows itself when we
change models, for instance by adding a variable or a new con-
straint.

Of course, if a model meets all the requirements of a classical
method, then using a heuristic will be less e�cient – on a rela-
tive scale. But computing power is “e�ectively in�nite” (Efron,
2000) when compared with 50 years ago, or at least getting less
and less a limitation. Thus, on an absolute scale these e�ciency
losses often turn out to be small. (In any case, the loss only con-
cerns time-to-compute. See below for other criteria.)

But if heuristics are such powerful methods, how come not ev-
eryone is using them? The typical objections against heuristics
are these:

Randomness. Heuristics have random elements, and so their
solutions are random. We thus cannot know whether we
have found the optimum.

Parameters. Heuristics require lots of parameters to be set and
adjusted.

Many algorithms. There are so many heuristics, and many
seem similar. We thus cannot know which technique is
best or at least works well.

Slowness. Heuristics are simply too slow.

Curiously enough, we think that the solution to all these points
is the same: experimentation. Let us elaborate, for which we
shall discuss those four points in reverse order.

The last objection is easiest to deal with: onmodern computers,
these techniques simply are not slow. Heuristics may require
some programming, such as coding an objective function, and
thus the speed with which an algorithm executes may depend
on the programming skills of its user.6

However, the main misinterpretation that people make is that
classical methods require fewer iterations, and hence must be
faster. But time-to-compute is only one property of an algo-
rithm. The quality of the model is important, too, and here
heuristics are better because they do not restrict the models we
can handle.

It also matters how long it takes to develop a tractable model.
An example from the �nancial industry, from Grinold and
Kahn (2008, pp. 284–285): The authors describe the implemen-
tation of algorithms for an index-tracking problem – �nding
a portfolio of only 50 stocks that most-closely resembles the
s&p500. A specialized, classical algorithm took six months to
be developed, and then delivered a solution within seconds. As
an alternative, a heuristic (a Genetic Algorithm) was tested as
well. Implementing it took two days; the algorithm found sim-
ilar solutions, but needed two days to compute them. But the

6This is true for all optimization methods except mathematical-
programming. And heuristics allow much more di�cult and expensive
objective functions in the �rst place, since they do not restrict the form of
the objective function. It is here where experimentation comes in, because
producing e�cient computer programs is not a mechanical task, but requires
repeated experimentation and testing.

example is from the 1990s. Today, on a standard pc, a Genetic
Algorithmwould compute the solution of such a model in sec-
onds, too. Of course, researchers may have learned since the
1990s, and they may develop models faster today. But it is hard
to believe that their performance improvement matches that of
computing technology.

In any case, a potential user of heuristics may be puzzled and
put o� by the large variety of available algorithms. We agree
that there is an unhelpful development in academic research to
produce ever more new algorithms, which are often only vari-
ations of existing ones. (We would prefer more study of ex-
isting algorithms.) But the situation is not that bad, actually:
there are well-studied andwidely-used algorithms available. We
have given concrete guidelines elsewhere (Gilli et al., 2011, chap-
ter 12), but the main point to remember is that any quest for a
best-performing algorithm is futile. Users should de�ne what
they require, then �nd an algorithm that meets those require-
ments, and then stop the search. What is important is to gain
understanding and intuition about theway the algorithmwalks
through the search space, by working and experimenting with
the algorithm.

But even if a user is willing to experiment with a given al-
gorithm, the troubles seem not to be at an end. For classi-
cal methods, including the techniques from mathematical pro-
gramming, the steps for using them are clearly speci�ed. Once
we have a model, there is little more to do than “to press a but-
ton.” We may exaggerate a bit; but generally no decision about
the actual algorithm has to be taken, nor about the parameters,
except some tolerances, which almost always are kept at default
values. (We do not say that this is good practice, but it is cer-
tainly common one; see Altman et al., 2003.) Thus, the user is
not embarrassed by any technical choices and the algorithm, in
most cases, provides “a solution” when it stops. Also, for clas-
sical methods, there is a precise way how to handle constraints,
but only those the method can take into account.

All this convenience is missing with heuristics. It is a character-
istic of heuristics that they are all based on just a few principles,
which is �ne ifwewant tounderstandhowheuristicswork. Un-
fortunately, it is also a downside: think of Simulated Anneal-
ing described above, where we said we choose a solution “close
to” the current solution. There are clearly many ways to de�ne
“close to.” Thus,withheuristics, theuser has to takemanymore
decisions.

But again, the situation is not that bad. For one, precisely-
described algorithms exist, the so-called “canonical versions.”
Also, many of the newer algorithms, such as Di�erential Evo-
lution (Storn and Price, 1997), prescribe precisely how new so-
lutions are to be created and require only few parameters to be
set. Second, most heuristics are robust with respect to di�er-
ent settings and thus will not fail, even with badly-chosen pa-
rameters. And in any case, more computational resources, i.e.,
more iterations, can typically heal bad choices. Finally, it is ac-
tually not that di�cult to �nd good parameter values for a given
model –we can run small-scale experiments, and stopwhen sat-
is�ed. In sum: it is true, heuristics are not o�-the-shelfmethods,
and some training is needed. (Such training should start in early
education in math classes.) But overall, what is expected from
users is manageable, as long as people are not afraid to experi-

4



ment.

There remains the �nal – or rather �rst – objection: heuristics
make use of random mechanisms, and thus solutions are ran-
dom, too. This randomness makes it, allegedly, more di�cult
to evaluate the quality of solutions computed by heuristic algo-
rithms, as compared with classical methods.

Solutions may be stochastic even with non-stochastic meth-
ods. For models that have multiple local minima or are badly-
behaved in other ways, repeated runs from di�erent starting
points will lead to di�erent solutions. With heuristics, of
course, repeated runs even from the same initial solution may
give di�erent solutions.

Handling such randomness is extremely straightforward and
should not scare anyone who is just remotely acquainted with
data analysis. We simply create a sample of solutions by restart-
ing the algorithm anumber of times, and then analyze that sam-
ple. Obviously, the best result constitutes the overall solution.
We can re�ne the result as much as we want, typically by al-
lowing more iterations. Importantly, through such analysis we
can explicitly explore the trade-o�between solutionquality and
computational resources. We stop when the solution is “opti-
mal enough” for the problem at hand.

Indeed, restarting the optimization algorithm is good practice
not only for heuristics, but for classical methods as well. The
result of a classical method should be validated by restarting
the optimization in a neighborhood of the original initial so-
lution. This would con�rm that we are in an at least locally-
convex region of the objective function. In particular if the
model turns out to be non-nonvex, restarting the optimization
procedure from various initial values and keeping the best solu-
tion is a useful and often surprisingly-successful strategy. (As a
side note: such a best-of-N–restarts strategy is a perfect exam-
ple for our suggestion to treat optimisation as a computational
tool, rather than a mathematical one. It would be very straight-
forward to wrap a classical algorithm – in fact, any algorithm –
into a restart-loop and then report the best solution and also the
variation among the solutions. But that is rarely done. See also
Gilli and Schumann, 2010.)

The deeper causes

The skepticism towards heuristics is only a symptom; the un-
derlying causes run much deeper. For generations, the typi-
cal syllabus in education has treated optimization as a purely-
mathematical problem. That leads to two views that are in con-
�ict with heuristics. First, mathematics teaches us coherence
and that results must be proven. Such formal proofs do not ex-
ist for heuristics, or at least not in the usual explicit formwehave
beenused to see in school. As a result, heuristics are instinctively
rejected as they are not considered to be based upon solid foun-
dations. (It is remarkable that even for classical methods, we of-
ten have only probabilistic guarantees, and sometimes not even
that. As an example, think of the workhorse algorithm for lin-
ear programming, the simplex method. It has been shown that
in the worst case the algorithm’s required iterations increase ex-
ponentially with problem-size; see Klee and Minty, 1972. But
experience shows that the algorithm works well.)

The second implication is subtler. Mathematics is an exact disci-
pline, and so there has, apparently, to be an exact solution to an
optimization model. This theme is ubiquitous in all disciplines
that usemathematics to formulate their ideas, and it leads to the
unwarranted intuition that when amathematical model is used
to describe a problem, the model’s solution inherits the exacti-
tude of the model. But it does not: as we said before, a model
is just a representation, not the actual problem. Thus, the solu-
tion, no matter how exact, is the solution to the model and not
to the problem. With luck, the quality of the model-solution
is correlated with that the of problem-solution, but that is not
guaranteed (and rarely investigated). In any case, the correlation
must disappear beyond a certain precision threshold. Of course,
we do not know this threshold. But we can use the tools of data
analysis to explore it. For that, we need to understand the com-
putational part of optimization, but also the actual problem.

4 Conclusions

In this essaywe have tried tomake the case for preferring heuris-
tics over classical optimization methods. Heuristics allow their
users to specify models without restricting the functional form
of the objective function or the constraints. Putting it some-
what exaggeratedly, they do so by replacing sophistication with
brute force. Yet, aswepointed out, brute force is so cheap and so
ubiquitous today that such an exchange entails little downside.

Ripley (1998) nicely summarizes the characteristics of
computer-intensive methods in this way: (i) Simple calcu-
lations are repeated many times; (ii) assumptions can be
relaxed; and (iii) with in�nite resources the solutions become
exact. This summary also �ts heuristics. The third point,
however, requires a quali�cation. Optimization is an applied
discipline; optimization algorithms are tools. Thus, “exact”
is not required; “good enough” is all that is needed (Gilli and
Schumann, 2011). Perversely, a numerically-precise solution to
a model may not even add quality, but give an unwarranted
feeling of being on the safe side. After all, a numerical solution
only relates to the model, not to the actual problem.

How a model and its solution help with the actual problem
needs to be explicitly studied. Such analysis typically is di�cult
and not very precise, but carefully exploring, quantifying and
discussing the e�ects of speci�c model choices is always better
than dismissing such an analysis as “out-of-scope.”

Zanakis and Evans (1981) list situations in which using a heuris-
tic is “desirable and advantageous”; the �rst item on their list
being “Inexact or limited data used to estimate model parame-
ters may inherently contain errorsmuch larger than the ‘subop-
timality’ of a good heuristic.” Few people would disagree with
such a prescription. Yet it is di�cult to �nd examples in the liter-
ature in which such an analysis is actually done. We conjecture
that this case applies in many scienti�c disciplines, and if peo-
ple analyzed their applications properly, they would �nd that
highly-precise solutions are rarely needed, and hence neither are
highly-precise methods. Againmore reason tomove away from
classical methods and towards heuristics. The costs of such a
shift would be low: we would have to give up somemathemati-
cal elegance and specious precision, and replace themwithmore

5



computation and experiments. In turn, we would stand to gain
a lot: better solutions, not to models, but to actual problems.

References

MicahAltman, Je�Gill, andMichael P.McDonald.Numerical
Issues in Statistical Computing for the Social Scientist. Wiley,
2003.

Leo Breiman. Statisticalmodeling: The two cultures. Statistical
Science, 16(3):199–231, 2001.

Jack J.Dongarra, Iain S.Du�,DannyC. Sorensen, andHankA.
van der Vorst. Numerical Linear Algebra for High-
Performance Computers. SIAM, 1998.

GunterDueck andPeterWinker. Newconcepts and algorithms
for portfolio choice. Applied Stochastic Models and Data
Analysis, 8(3):159–178, 1992.

Bradley Efron. The bootstrap and modern statistics. Journal
of the American Statistical Association, 95(452):1293–1296,
2000.

Philip E. Gill, WalterMurray, andMargaret H.Wright. Practi-
cal Optimization. Elsevier, 1986.

ManfredGilli and Evis Këllezi. AGlobal OptimizationHeuris-
tic for Portfolio Choice with VaR and Expected Shortfall.
In E. J. Kontoghiorghes, B. Rustem, and S. Siokos, edi-
tors,ComputationalMethods inDecision-making, Economics
and Finance, Applied Optimization Series, pages 167–183.
Kluwer Academic Publishers, 2002.

Manfred Gilli and Enrico Schumann. A note on ‘good starting
values’ in numerical optimisation. COMISEF Working Pa-
per Series No. 44, 2010. available from http://comisef.

eu/?q=working_papers.

Manfred Gilli and Enrico Schumann. Optimal enough? Jour-
nal of Heuristics, 17(4):373–387, 2011.

Manfred Gilli, Dietmar Maringer, and Enrico Schumann. Nu-
merical Methods and Optimization in Finance. Else-
vier/Academic Press, 2011.

Richard C. Grinold and Ronald N. Kahn. Active Portfolio
Management. McGraw-Hill, 2nd edition, 2008.

Scott Kirkpatrick, C. Daniel Gelatt, and Mario P. Vecchi. Op-
timization by Simulated Annealing. Science, 220(4598):671–
680, 1983.

VictorKlee andGeorge J.Minty. Howgood is the simplex algo-
rithm? InOved Shisha, editor, Inequalities III – Proceedings
of the Third Symposium on Inequalities held at the University
of California, Los Angeles, September 1–9, 1969, pages 159–175.
Academic Press, 1972.

HarryM.Markowitz. Portfolio selection. Journal of Finance, 7
(1):77–91, 1952.

BrianD. Ripley. Computer-intensive methods. In P. Armitage
and Theodore Colton, editors, Encyclopedia of Biostatistics.
Wiley, 1998.

Rainer M. Storn and Kenneth V. Price. Di�erential Evolution
– a simple and e�cient heuristic for global optimization over
continuous spaces. Journal of Global Optimization, 11(4):
341–359, 1997.

Jan Tschichold. Buchherstellung als Kunst. In Richard von
Sichowsky, editor, Typographie und Bibliophilie: Aufsätze
und Vorträge über die Kunst des Buchdrucks aus zwei
Jahrhunderten. Maximilian-Gesellschaft, 1971.

Margaret H. Wright. Direct search methods: Once scorned,
now respectable. InD.F. Gri�ths andG.A.Watson, editors,
Numerical Analysis 1995 (Proceedings of the 1995 Dundee Bi-
ennial Conference inNumerical Analysis, pages 191–208.Ad-
disonWesley Longman, 1996.

Stelios H. Zanakis and James R. Evans. Heuristic “optimiza-
tion”: Why, when, and how to use it. Interfaces, 11(5):84–91,
1981.

6


